Symbol Number:	Invigilator's Sign:	Superintendent's Sign:	
Symbol No. in Words: _		Code No.	

School: SOE	Level: BE	Program: BCE	Exam Year: 2080, Push
Subject: Engineering M	echanics II (EG502CE)	1	Year/Part: II/I (Model Question)
GROUP A (Multiple-Cho	oice Questions)		[10x1=10]
i. Answers shou ii. Rough can be iii. Maximum tim	ld be given by filling the Multipi done in the main answer sheet e of 20 minutes within the total	le-Choice Questions' An I time is given for this g	Code No.
One foot = m a. 0.3048 b. 0.3028 c. 0.3058 d. 0.3038		6. If v ₁ , v before equati a. m b. m	² is the initial and final velocity of the body and after impulse, the impulse momentum on is nv ₁ +impulse=mv ₂ nv ₂ +impulse=mv ₁
 The motion of the part x = t²-10t+30, where x in seconds. Total distance a. 34m b. 50m c. 40m d. 45m 	cicle is defined by the relation x is expressed in meter and <i>t</i> ince travelled in 10 sec is	c. n d. n 7. Formula uniform a. v b. v c. v	nv1-impulse x time ² =mv2 nv2-impulse x time ² =mv1 a for the distance travelled by the body in n motion is given by t ² t /t
The normal compor particle moving in a c a. v ² /r b. dv/dt c. v ³ /r ² d. ro	nent of acceleration for a rcle is	d. v 8. Magnitu a. Ω b. Ω c. Ω d. 2	-/τ ude of Coriolis acceleration is given by Pr Pr Ru Ωu
Velocity at which the orbit of planet and fli given by a. $\sqrt{\frac{3GM}{R}}$ b. $\sqrt{\frac{4GM}{R}}$	e body escapes the elliptical es off the gravity of planet is	9. A ball angular tangent a. 0 b. Ω c. 4 d. 2	tied in a rope is spinning with constant velocity Ω , with a constant radius "r" the ial acceleration experienced by ball is $\Omega^2 r$ Ωu Ωu
c. $\sqrt{\frac{GM}{R}}$ d. $\sqrt{\frac{2GM}{R}}$. Formula for angular n	10mentum is given by	10. Coeffici a. R v b. R v c. A	ent of restitution is defined as delative velocity after collision/relative elocity before collision delative velocity before collision/relative elocity after collision ubsolute velocity after collision/absolute

- a. mvr
- b. mvt
- c. mxt
- $d. \quad m^2 t$

Multiple Choice Questions' Answer Sheet

Marks Secured:		
In Words:		
Examiner's Sign:	Date:	
Scrutinizer's Marks:		
In Words:		
Scrutinizer's Sign:	Date:	

Corrected Fill
$(A) \bullet (C) \bullet (D)$
Incorrected Fill

1. A B C D	6. A B C D
2. A B C D	7. A B C D
3. A B C D	8. A B C D
4. A B C D	9. A B C D
5. A B C D	10. A B C D

velocity before collision

velocity before collision

d. Absolute velocity before collision/absolute

MANMOHAN TECHNICAL UNIVERSITY **Office of the Controller of Examinations**

Exam Year: 2080, Push

School: SOE	Level: BE	Program: BCE	Time: 3 Hours
Year/Part: II/I (Model Question)			Full Marks: 50
Subject: Engineering Mechanics II (EG502CE)			Pass Marks: 20

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

GROUP A (Multiple-Choice Questions and Answer Sheet in separate paper)

GROUP B (Short Answer Questions - Attempt Any Eight)

- 1. Derive expression for velocity and displacement of a body with uniform acceleration in a rectilinear motion.
- 2. The motion of a particles is defined by the position $\vec{r} = 6t\hat{i} + 4t^2\hat{j} + \frac{t^3}{4}\hat{k}$ vector where r in meter and t in second. At the instant when t = 3 sec, find the unit position vector, velocity and acceleration.
- 3. Prove the law the conservation of angular momentum.
- 4. In figure-1, a 10 kg collar slides without friction along a vertical rod. The spring attached to the collar has an undeformed length of 100 mm and a constant of 500 N/m. If the collar is released from rest in position 1, determine its velocity after it has moved 150mm to position 2.

- 5. The double gear shown in figure-2, rolls on the stationary lower rack, the velocity of its center A is 1.2 m/s, directed to the right. Determine
 - a. Angular velocity of the gear
 - b. Velocity of the upper rack 'R' and of the point 'D'

- 6. Derive an expression for kinetic energy due to rotation and translation occurring simultaneously in a Body.
- 7. What is a Coriolis acceleration? Derive an expression for the same.
- 8. What is Instantaneous center of rotation. Write various method of locating center of rotation.
- 9. The plane curvilinear motion of the particle is defined in polar co-ordinates by r=t3/4+3t and θ =0.5t2 where r is in m, θ is in radian and t is in second. At the instant when t=4 sec, determine the magnitude of velocity and acceleration of the particle.

[10x1=10]

[2x8=16]

GROUP C (Long Answer Questions - Attempt Any Six)

- 10. Derive expression for normal and tangential component of a body moving in a curvilinear path of a uniform radius 'r'.
- 11. A ball is thrown vertically upward from the 12-m level in an elevator shaft with an initial velocity of 18 m/s. At the same instant an open-platform elevator passes the 5-m level, moving upward with a constant velocity of 2 m/s. Determine
 - a. when and where the ball will hit the elevator,
 - b. the relative velocity of the ball with respect to the elevator when the ball hits the elevator. [2+2]
- 12. A boy is spinning a ball tied in a string of radius 1m, with a uniform angular velocity of 60 rpm (revolution per minute). The string suddenly got broke and the ball went away shooting in the air making 30° with the linear ground surface. Find the following:
 - a. The total horizontal distance travelled by the ball
 - b. Max vertical height achieved by ball
- 13. A satellite is launched in a direction parallel to the earth surface with a velocity of 36900 km/h from an altitude of 500km. Determine
 - a. Maximum altitude reached by the satellite
 - b. the periodic time of the satellite (Assume earth radius as 6370km) [2+2]
- 14. The magnitude and direction of the velocity of two identical frictionless balls before they strike each other are as shown. Assuming e=0.9, determine the magnitude and direction of the velocity of each ball after the impact.

[4]

[2+2]

[4]

Figure-3

- 15. A nozzle discharges a stream of water of cross-sectional area A with a velocity V_a. The stream is deflected by single blade that moves to the right with constant velocity V. Assume the water moves along the blade at constant speed, determine
 - a. component of force F exerted by blade on the stream
 - b. Velocity V of the turbine for which maximum power is developed
- 16. In the engine system shown, the crank AB has a constant clockwise angular velocity of 2000rpm. For the crank position indicated, determine:
 - a. the angular velocity of the connecting rod BD
 - b. the velocity of position P...

∞∞ *The End* ∞∞

[2+2]

[2+2]